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The hetisine natural products are a family of complex-C
diterpenoid alkaloids isolated from thAconitum Consolida
Delphinium Rumex and Spiraeagenera, plants that have been
widely used in traditional herbal medicideSeveral of the more
than 100 members of the hetisine alkaloids, exemplified by
nominine (, Chart 1)? kobusine 2),° and hetisine 3),* exhibit a
diverse spectrum of biological activities, including potent vasodi-
lating, antiarrhythmic, immunomodulating, and analgesic activities,
in vivo.t Although the hetisine alkaloids have been known for more
than a half-century, the majority of synthetic efforts directed at these
complex targets have involved only a handful of synthetic model
preparations of aza-polycyclic substructuteln fact, the total

synthesis of any member of the hetisine alkaloids remained elusive

until the recent landmark work of Muratake and Natsume, in which
a 40-step synthesis of)-nominine () was accomplished in 2004.
We now report a convergent, dual-cycloaddition approach to the

hetisine alkaloids, illustrated by an exceedingly concise synthesis

of the antiarrhythmic agent nominin&)(
Consideration of the structure of nominir# {n a conformational

representation (Scheme 1) reveals a potentially expedient route to

the hetisine core via two cycloaddition processes (#e..These
include an aza-1,3-dipolar cycloaddition (1,3-DC) to construct the
bridged pyrrolidine ring, followed by a Diels-Alder (DA) reaction
to assemble the [2.2.2]-bicyclic substructure witinBecause
functional group compatibility issues would likely preclude a
tandem double-cycloaddition event, synthetic efforts commenced
with the preparation of a substrate incorporating the requisite
dipole-dipolarophile complement in conjunction with a latent
diene-dienophile pair.

Synthesis of a suitable dipolarophile precursor was accomplished

in a short series of steps, beginning withttho-lithiation of
p-anisaldehyde dimethyl acetab, (Scheme 2J, followed by its
nucleophilic addition to 2-chlordd-methoxylN-methylacetamide,

to provide the aryl ketoné (52%). Subsequent exchange of the
a-chloro substituent irf to its a-azido counterpart (Nad\ 95%)
and acid-catalyzed rearrangement afforded the cyclic bis(adetal)
as a 3:2 mixture of diastereomers (99%). The dipolarophile

Chart 1
R4
RS f Nominine (1)
AL~ CHz (R" R R® R*=H; R%=OH)
R Kobusine (2)
’ RS (R, R?, R* = H; R®, R% = OH)
- Hetisine (3)
Hetisine 3 P51 bl P2 D4 _
e Core (R% R®= H; R', R? R*= OH)
Scheme 1
[1,3-DC] [DA]
NP OH
Me :
~L =
CH;,
N H
1 H
Scheme 2 2
0 OMe
OMe ¢ OMe OMe
MeO a MeO b, ¢ o]
OMe 5 oMe © H ome 7

Me Me Me
d CN e f CHO | ¢
8 9 10
0o OTf CN
Me ® Me OMe
N7 h N OMe
-— H g
x OMe )
CN oo 12 CN 11 OMe

aReagentsand conditions: {@uLi, Et,0,—23°C; CICH,C(O)N(OMe)Me,
52%; (b) NaN, acetone, 23C, 95%; (c) AcCl, MeOH, 23C, 99% (3:2
dr); (d) AIEL,CN, benzene, 23C; TBAT, Tf,0, benzene, 23C, 81%; (e)
DIBAL-H, PhMe, 0°C, 92%; (f) Zn(CN), Pd(PP)s, DMF, 60°C, 85%;
(9) 7, 10, PB, NaBH(OAC), CH,Cly, 23°C, 79% (3:3:2:2 dr); (h) 10%
TFA in CH.Cl,, 0 °C, 93%.

TFA-catalyzed MeOH extrusion and isomerization to the 4-oxido-
isoquinolinium betaind 2 (93%), which served as a suitable aza-

component was accessed efficiently from 3-methylcyclohexenone 1,3-dipole.

(8), in which conjugate cyanatiérfollowed by enolate trapping
with Tf,O led to enol triflated (81%). Sequential nitrile reduction
to the aldehyde (DIBAL-H, 92%) and Pdatalyzed cross coupling
with Zn(CN),® provided the ene-nitrile dipolarophil&0 (85%),
ready to be condensed with the aza-dipole precui&orf his
convergent step was accomplished with a Staudingea-Wittig
reaction {, 10, PBuw) in conjunction with imine reduction (NaBH-
(OAc);) to afford the aminell (79%) as a mixture of four
diastereomers. All four diastereomdrswere then converged via
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1,3-Dipolar cycloadditions involving oxidopyridinium betaines
have proven to be valuable in alkaloid synthé8ispwever, the
use of oxidoisoquinolinium betaines in this capacity is compara-
tively rare!* When a solution of betain&2 in THF (5 mM) was
heated in a sealed tube at 18C (Scheme 3), intramolecular
cycloaddition occurred with 97% conversion to provide an easily
separable mixture of pyrrolidine constitutional isomé&Bsand 16,
each arising from differential facial approach of the dipole-
dipolarophile partners. While the desired cycloaddiowas formed
as the minor constituentL$:16, 1:3.6)}2 the isomeric ratio was
verified to be the result ofhermodynamicselection. Indeed, the
cycloaddition event was found to lbeversibleunder the reaction
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Scheme 3 @ 15-step sequence with only a single protective group manipulation.
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a Reagents and conditions: (a) THF, 18D, 97% conversion td5 and
16, (1:3.6, with reversible recycling5 = 16); (b) NaBH,, EtOH, 23°C;
(c) SOCh, CHyCly, reflux; (d) BusSnH, AIBN, PhH, reflux, 68% (3 steps);
(e) DIBAL-H, PhMe, 0°C, 85%; (f) PRP=CH,, THF, 23°C, 96%; (g)
N&, Me;CHOH, THF, —78 °C; HClag, 97%; (h) 9:1 MeOH/pyrrolidine,
60°C, 78%; (i) PAP=CH,, THF, 70°C, 77%; (j) Se@, t-BuOOH, CHCl,,
23°C, 66% (dr 7:1).

conditions, thereby enabling reiterative thermal re-equilibration of
the isolated undesired cycloaddud to enhance the production
of 15 with minimal loss of material.

Advancement of the cycloadduib continued with a ketone-
to-methylene reduction to forti7 (NaBH,; SOCh; BusSnH, AIBN,
68% overall) and conversion of the nitrile to the alkéi®<DIBAL-

H; PhsP=CH,, 82% overall) to reveal the dienophile functionality.
Birch reduction (N& Me,CHOH, THF, NH;, —78 °C)!3 of the
aromatic ring in18 and acidic workup led to the formation of the
f,y-unsaturated cyclohexenond® (97%), which, upon exposure
to pyrrolidine in MeOH at 60°C, afforded the intramolecular
Diels-Alder adduc®lin 78% yield after silica gel chromatography.
Although not explicitly detected, a small equilibrating quantity of
the dienamine isome20 was presumably formed and funneled
productively to the committed f42] cycloaddition. The final steps
of the synthesis involved Wittig methylenation of the ketdie
(PhsP=CH,, 77%) followed by diastereoselective Se@llylic
hydroxylatiort* to afford nominine {, 66%, 7:1 dr), whose structure
was verified by X-ray analysis.

Through the establishment of a dual cycloaddition strategy, a

short total synthesis off)-nominine () was accomplished in a

Notable features include a reversible intramolecular 4-oxidoiso-
quinolinium betaine 1,3-dipolar cycloaddition as well as a pyrro-
lidine-induced dienamine isomerization/Diels-Alder cascade. This
rapid synthetic access into the hetisine skeleton should pave the
way for the construction of other, more highly oxidized, members
of the Gg-diterpenoid alkaloids such as the antiarrhythmic guan-
fu bases.
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